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J .  Phys. A: Math. Gen. 20 (1987) L1135-L1138. Printed in the U K  

LETTER TO THE EDITOR 

An obstruction to generalising superalgebras 

K C Hannabuss 
Balliol College, University of Oxford, Oxford OX1 3BJ, U K  

Received 1 September 1987 

Abstract. I t  is shown that a G-graded algebra in which xy is a scalar multiple of y.x is just 
a twisted version of a Z2-graded superalgebra. 

Superalgebras have proved to be such a useful class of &-graded algebras that it is 
tempting to consider analogues where 2, is replaced by another group. In this letter 
we shall show that the scope for such a generalisation is rather limited. 

We first recall that an algebra a is said to be G-graded (with G a discrete group) 
if, as a vector space, it decomposes into a direct sum 

a = Q  ag 
g e C i  

in such a way that a g . a h = a g h  for all g , h E G .  When a is a Banach algebra the 
representation theory of such ‘Banach algebra bundles’ has been studied by Fell (1969). 

The particular feature of superalgebras which gives them such a rich calculus is 
the additional assumption relating xy to yx.  If a is a complex algebra we can easily 
generalise this by the assumption that 

xY=E(g,  h)YX 

whenever x E ag and y E ah,  where E(g, h )  is a non-zero complex number. 
Since 

XY = E(g, h)YX = E(g, h ) E ( h ,  g)xY 

.(g, h ) E ( h ,  g )  = 1 

we see that unless ag ah = O  we must have 

i.e. E is antisymmetric. ( In  fact, we may always take E to be antisymmetric since when 
agar,=O it may be changed with impunity.) In  particular, 

g)’= 1 

so that E(g,g) is always 1 or -1. 
We note that, up until now, we have not needed to assume that a is associative, 

so that the argument would have applied equally to graded Lie algebras, but for the 
next step we shall assume that a is associative. Then for Z E ~ ~  

&(gh,  k ) z x y  = x y z  = E ( h ,  k ) x z y  = E ( g ,  k ) & ( h ,  k ) z x y  

E k h ,  k )  = 4 g ,  k ) & ( h ,  k ) .  

so that unless a g a h a k = O  we have 

0305-4470/87/ 171 135 + 04$02.50 0 1987 IOP Publishing Ltd L1135 



L1136 Letter to the Editor 

By antisymmetry E also defines a linear character in its second variable, so that we 
deduce that E is a bicharacter on G (i.e. a character in each variable). This immediately 
tells us that E depends on G only through the Abelian quotient G/[G,G], (where 
[G, GI denotes the commutator subgroup). Consequently we may as well assume that 
G is Abelian. 

We notice also for further use that 

E(gh, g h )  = E ( h ,  h ) E ( h ,  g ) E ( g ,  h ) 4 g ,  g )  

= E(h,  h ) E ( g ,  g )  

so that g+  E(g, g) defines a homomorphism from G into the two-element group {*l}. 
We shall therefore find it useful to introduce the 2,-valued character E(g) = &(g,  g). 
Examples such as the irrational rotation algebra (Rieffel 1981) (arising from an integer 
version of the canonical commutation relations) show that this is about as much as 
one can say in general. 

One may, however, wonder how much the lack of commutativity could simply be 
due to the presence of a multiplier on the group. For suppose that U is a multiplier 
on G and we define a new ‘twisted’ product 

X * Y  = 4% h ) X Y  

X * Y  = d g ,  h M g ,  h ) Y X  = [4g ,  h ) / U ( h ,  g ) l 4 g ,  h)Y*X 

for x E aR,  y E a h ,  then 

so that E has changed. The question is whether we can simplify or remove P altogether 
by introducing such a new ‘twisted’ product. 

In fact, Kleppner (1965, proposition 6.1) has shown that, by a suitable choice of 
U, E may be replaced by a character which is both symmetric and antisymmetric. We 
may as well assume that this has already been done, so that 

& ( g 2 , h ) = E ( g , h ) 2 = E ( g , h ) & ( h , g ) = 1 .  

This means that E is now a 2,-valued bicharacter which is lifted from the group G / G 2 ,  
and so without loss of generality we may assume that G is actually a 2-group. 

We now choose a set of generators for G and for each pair {g, h }  of distinct 
generators we let a(g ,  h )  and ~ ( h ,  g )  each take the value *1 related by the condition 

4g ,  h) /c+(h ,  g )  = - - E h  h )  if & ( g )  = ~ ( h )  = -1  

=+c(g ,  h )  otherwise 

and let a(g ,  g )  = 1. If (+ is extended to a bicharacter on G then it automatically satisfies 
the cocycle identity and so defines a multiplier. Twisting the old product by U we 
obtain a new product such that 

X*Y = - Y * X  if E ( g )  = ~ ( h )  = - 1  

= Y * X  otherwise. 

But now by setting 

a+= e ag 
e ( g ) = * l  

we have a graded algebra in the usual sense. Thus the only algebras in this class of 
generalised superalgebras are those obtained from ordinary superalgebras by twisting 
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the product by a group multiplier. By exploiting some of Kleppner's more detailed 
results it is even possible to drop the condition that G be discrete and consider wider 
classes of topological groups. 

If 5 is a homogeneous algebra then the method of Fell (1969) permit one to induce 
all its irreducible representations, but unfortunately few interesting graded algebras 
seem to be homogeneous. 

Graded Lie algebras could be studied with the aid of the associative enveloping 
algebra but that is rather restrictive and it is more satisfactory to extend the above 
discussion directly to Lie algebras 5 graded by a group G in the sense of the earlier 
paragraphs. We have already observed that the arguments which show that 
E(g, h ) e ( h ,  g )  = 1 and that E(g, g )  = *1 are still valid. For graded Lie algebras we shall 
impose the additional requirement that & ( e ,  e )  = - 1  where e is the identity element of 
G. The associative law must be replaced by a generalised Jacobi identity which may 
be written as 

X ( Y Z )  = ( X Y ) Z +  e ( g ,  h ) y ( x z )  
for a suitable function 8 on G x G and x E a g ,  y E ah,  z E 5 k .  

Now 

E ( k ,  h ) x ( y z )  = X ( Z Y )  

= ( X Z ) Y +  O(g, k ) z ( x y )  

= h ) y ( x z ) + e ( g ,  ~ k ,  g w y ) z .  

So unless the Lie multiplication is degenerate we must have 

E ( k  h )  = %, k ) & ( k ,  g h )  

E V ,  w ( g ,  h )  = +k, h i .  

O(g, h )  = E ( h ,  k)s(gk, h )  

Multiplying the latter equation by ~ ( h ,  k )  we obtain 

and the former equation yields an equivalent identity on multiplying by E(gk, h ) .  
Setting k = e we deduce that 

h )  = & ( h ,  e ) e ( g ,  h ) .  

Thence 

e(g, h ) e ( k ,  h )  = h ) & ( h ,  k ) ~ ( k ,  h ) ~ ( h ,  e )  

= E(gk, h ) ~ ( h ,  e )  

= e ( g k ,  h ) .  

Thence e( a ,  h )  is a character for each h E G. In particular, if we write ,y for the 
character e ( . , e ) = ~ ( . , e ) ~ ( e , e ) = - - ~ ( . , e ) ,  then 

O(g, h )  = 

X ( h ) E k ,  h ) E ( h ,  k )  = - e ( g k ,  h ) .  

- X ( h ) - ' E ( h ,  g ) 4 h ,  k )  = E ( h ,  g k )  

h ) E ( h ,  e )  = - x ( h k ( g ,  h ) .  
Substituting this back into the bicharacter property of e we obtain 

Inverting this and exploiting the antisymmetry of E ,  then 
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from which it immediately follows that - x (h ) - ' -E (h ,  e )  is also a character. Combining 
this with the earlier result we conclude that 

-x ( g  ) -- 'x ( h 1 -E (g,  h 1 

&(g,  h )  = - P k ,  h ) x ( g h - I )  

fvg,  h )  = P ( g ,  h ) x ( g )  

defines an  antisymmetric bicharacter, p. So 

with p an  antisymmetric bicharacter and x a character. By direct substitution one can 
easily check that for any p and x these d o  satisfy the original constraints. 

I f  one imposes the extra condition that 

&(g ,  e )  = & ( e ,  g )  = -1 

for all g in G then ,y = 1 and  6 = /3 = --E is an antisymmetric bicharacter. One can 
then show, as in the associative case, that a differs from an  ordinary Lie superalgebra 
only by a twisting. 
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